
Programming and Conducting
Experiments with z-Tree

Slides by Silvio Ravaioli

Columbia Experimental Laboratory for Social Science https://celss.iserp.columbia.edu/

Last update: October 2019. Based on the slides created by Han Huynh (Columbia
University), Ernesto Reuben (New York University) and Mark Pigors (University of Cologne)

All errors are my own. If you find any, or you have suggestions to improve the slides,
please contact me: sr3300@columbia.edu

https://celss.iserp.columbia.edu/
mailto:sr3300@Columbia.edu

(Before) Running an Experiment

´ Before diving into coding

´ Think HARD about your experiment

´ Coding and thinking can help each other but …

´ … thinking hard about your experiment BEFORE coding will save you time (and money)

´ Because you are actually creating data, think through your experiment from start to finish

´ Coding/Testing

´ Production/Data storage

´ Payment

´ What is the nature of my experiment?

´ Individual decision making or strategic?

´ What is the scale of my experiment?

´ Do I foresee my experiment to go beyond the lab?

´ What are the treatments?

´ What are the variables I want to collect?

´ What kind of (technical) support do I need?

(Before) Running an Experiment

´ zTree
´ Restrictions in interface. No scope beyond the lab

´ Testing and production are easy for “standard” experiments

´ oTree
´ Require quite a bit of programming knowledge: Python, HTML, Javascript. Great flexibility

´ It’s online so scaling is easy. Testing is ok but production is challenging

´ Qualtrics
´ Annoying coding experience since the server is slow. You need someone to pay for the account

´ Just a little knowledge of HTML and Javascript can give you a lot of flexibility

´ Significantly upgraded survey monkey. Testing and production are extremely easy

´ PsychToolBox (Matlab PTB)
´ Based on Matlab: it is like learning “HTML for Matlab”. Amazing flexibility (even more than oTree!)

´ People in psychology/neuroscience use it a lot. Less common in economics (fewer example codes to use)

´ No scope beyond the lab. Coding strategic experiments is difficult (but possible)

(Before) Running an Experiment

´ Zurich Toolbox for Ready-made Economic Experiments

´ Designed to enable the conduction of economic experiments without

much prior experience

´ Two parts:

´ Z-Tree: to define and conduct experiments (server program)

´ Z-Leaf: program used by the subjects (client program)

zTree – Getting Started

zTree Screen

zLeaf Screen

´ Free license: https://www.uzh.ch/ztree/ssl-dir/index.php

´ Reference manual: https://www.ztree.uzh.ch/static/doc/manual_v4.pdf

´ Support and Mailing list: https://www.uzh.ch/cmsssl/ztree/en/support.html

´ Ready-made experiments: https://www.ztree.uzh.ch/en/examples.html

´ Other resources:

´ Ernesto Reuben: http://www.ereuben.net/teach/

´ Maria Bigoni: https://sites.google.com/site/ztreenotes/home

zTree – Getting Started

https://www.uzh.ch/ztree/ssl-dir/index.php
https://www.ztree.uzh.ch/static/doc/manual_v4.pdf
https://www.uzh.ch/cmsssl/ztree/en/support.html
https://www.ztree.uzh.ch/en/examples.html
http://www.ereuben.net/teach/
https://sites.google.com/site/ztreenotes/home

´ zTree is Windows only, but you can use this trick to run it on a Mac

´ http://economistry.com/2013/05/run-z-tree-on-a-mac/

´ Setting up a test environment: no need for several computers!

´ Start zTree and more than one zLeaf on one computer

´ You have to give the zLeaves different names

zTree – Getting Started

http://economistry.com/2013/05/run-z-tree-on-a-mac/

Conducting Experiments in zTree

Conducting Experiments in zTree - Roadmap

´ Terminology: Session, Treatment, Period,…

´ Tables: How you observe the experiment in real time

´ Examples: 3 simple demos

´ Files saved: Data, Payment, Questionnaire information,…

´ Easy steps to run a session (without knowing anything else)

Experimenter

Subject

Subject

Subject

Subject

Subject

Subject

Structure of Experiments

zTree

zLeaf

zLeaf

zLeaf

zLeaf

zLeaf

zLeaf

Structure of Experiments

Experiment

Session

Treatment

Terms

Every treatment/questionnaire
is a separate zTree program

Questionnaire

Tr
e

a
tm

e
nt

Stage
(=2 screens: active/waiting)

Tables
Clients’ table

´ Shows the state of every Leaf

Global table (one record)

´ Same for every subject

´ Default variables: Period, NumPeriods, RepeatTreatment

Subjects table (one record for every subject)

´ Default variables: Period, Subject, Group, Profit, TotalProfit, Participate

Three Simple Demos
3 examples from zTree website (demos, not full experiments)

´ Beauty contest

´ Every subject submits a number between 0 and 100

´ The subject who is closest to ½ of the mean is the winner

´ Descending auction (simple Dutch auction)

´ An item (e.g. stock with private value) is sold with an auction system

´ The price starts from 100 and decreases by 5 points every few seconds

´ The first subject who accepts the offer wins the item and pays the price

´ Trading market (double auction)

´ Every subject starts with 1000 points and 100 stocks

´ The value of the stock is unknown (e.g. it varies between subjects)

´ Participants can buy or sell stocks using a double auction

´ The treatment ends when everyone leaves the market (press the OK button)

zTree can be flexible (but it takes time)

Files saved by zTree

Session data are saved in the directory containing z-Tree.exe

´ .pay: the payment file, which lists the subjects’ final profits including

the show-up fee (you can print it for easy payment)

´ .xls: contains all tables used in a session (subjects, globals, etc.)

´ .gsf: backup file, in case a crash occurs

´ .adr: subjects’ addresses (from the Questionnaire)

´ .sbj: answers to questionnaire’s questions, without subjects’ names

Running a session is VERY easy

´ You can run a session without knowing much!

Just follow the steps (next slide)

´ You may need to edit some parameters of the

experiment (click the Background icon)

´ Number of subjects

´ Number of groups

´ # practice and paying rounds

´ Payment structure (dollars/experimental currency)

Running a session is VERY easy

1. Startup of the experimenter PC, open zTree

2. Startup of the subject PCs, open zLeaf (make sure you use the same version, e.g. 3.6.7)

3. Arrival of subjects, close the extra zLeaves (if any)

4. Update the general parameters in the background (# subjects, # groups)

5. Start of the session and first treatment, observe the course of the session (Clients’ table)

6. Start further treatments (if any)

7. Conclusion of the session with a questionnaire

8. Payment

9. Switch off the subject PCs

10. Download the files from the experimenter PC

Programming in zTree

Programming in zTree - Roadmap
´ Experiment 1: Measuring Risk Aversion

Goal: Understand zTree interface and structure

´ Questionnaire and stored files

´ Experiment 2: Public Good Games
Goal: understand basic features of tables, create groups

´ Experiment 3: Ultimatum Game
Goal: Create asymmetric roles for the subjects

´ Experiment 4: Simple Auction
Goal: Use the Contract table

Experiment 1: Measuring Risk Aversion

Goal: understand zTree interface and structure

´ Measuring Risk Aversion using BDM method (Becker-DeGroot-Marschak)

´ Lottery: $0 with probability q and $x with probability (1-q)

´ Question: “State the amount of money that makes you indifferent between receiving

this amount and playing the lottery” (Certainty Equivalent = CE)

´ Draw z randomly between 0 and x

´ If z>= CE, subject receives $z

´ If z<CE, subject plays the lottery

zTree Screen

Background

´ Double click on Background

´ Set number of subjects (1)

´ Set number of groups (1)

´ Set number of periods (0 + 1)

´ program inside background

´ Execute at the very beginning of the treatment

´ Treatmentà New Program

´ Need to decide at which “level” to add the

program (table)

´ globals vs subjects

´ In this screen: define the parameters for the

lottery and save them in the subjects table

Background

Programs

´ Not very different from how you program in other platforms

´ Variables, assignment q = 0.5

´ Loops for and while, conditions if, and, or

´ Comment on your code (starts with //)

´ End statements with ;

´ Useful pre-defined table functions (more later)

Programs

´ Parameters: Background

´ Actions: Stage

´ Treatmentà New Stage

´ Active Screen

´ Waiting Screen

Add a Stage

Add a Stage
´ A stage (roughly) corresponds to a screen

´ No distinction between input stages (action),

output stages (results, feedback), or mixed ones

´ Parameters of the stage

´ Name of stage

´ Condition to start

´ Timeout

Design the Active Screen

´ Display your question/parameters

´ Boxes, items and buttons

´ Active Screen -> Treatment -> New Box

´ Box -> Treatment -> New Item

´ Used for inputs and outputs

´ Box -> Treatment -> New Button

´ Especially when there is an input

Boxes
´ Container box: rectangular area containing other boxes

´ Useful: keep things in place, move many boxes at the same time

´ Distances can be set as % of the screen or in pixels

´ Display condition

´ Used to make boxes appear (when true) or disappear (when false)

´ Standard box

´ Chat box, Plot box, Contract box

Input and Output

´ Label: text displayed

´ Variable: use variable names to be used in

programs

´ Layout: format, e.g. number of digits 1/0.1/0.01

´ More options to layout

´ For input: you can specify more parameters

Input and Output

Default element on Active Screen
´ Add to Active Screen in Background

Default Waiting Screen
´ Default message on Waiting screen in Background

Result stage
´ Need to write a simple program to calculate the payment

´ Use the predefined functions

z = random()*100;

if (z >= CE){

Profit = z;

}

else{

q = random();

Profit = if(q >= p, X, 0);

}

Test your zTree program

´ OpenZleafs.exe to run several Leaves at the same time

´ Specify the number of zLeafs to be the number of subjects

´ Run -> Start Treatment

´ Once you start a treatment, you cannot edit the program

Questionnaire

´ Now you know

´ How to start a treatment: background, stages

´ Some basic elements in designing and programming a treatment: boxes, items, buttons

´ How to test a treatment: zLeaf

´ How to monitor subjects’ progress in an experiment: tables

´ How to end a treatment: Questionnaire

´ Questionnaire ends your treatment with payoff-irrelevant questions

´ The questions are optional but the questionnaire is not

´ The (possibly empty) address form is mandatory

´ File -> New Questionnaire

´ Questionnaire -> New Address Form

´ If First Name and Last Name are omitted, the address form will not be displayed

´ Add another question after the address form

´ Display Final Profit

´ Thank you/Goodbye screen

´ Once the last subject finishes the address form, a payment file will be written

´ Print it and pay the subjects according to the amount

Questionnaire

Organizing your files
´ If you run an experiment using zTree in the lab, your files are automatically organized in

folders:
´ paydir: gathers the payment files

´ programs: save your programs

´ expdata: gathers the experimental data

´ temp: gather the temporary files

´ You can do the same in your computer by changing the properties of zTree
´ Create a shortcut of zTree outside of programs

´ Change Start in to the parent folder

´ New folders: paydir, priv, temp, expdata

´ Add to Target: /tempdir temp /gsfdir temp /privdir priv /paydir paydir
/datadir expdata /language en

Experiment 2: Public Good Games

Goal: understand basic features of tables, create groups

´ In each period subjects are assigned to groups of n

´ Each subject starts with y points.

´ Subjects keep their points or invest in a public good

´ Let c_i be the amount invested in public good by subject i

´ The profit of each subject i:

π_i = y – c_i + (α/n)Σc_j

where j’s are the members of the same group

´ The game is played for t periods

Groups
´ Set the number of groups in background

´ Matching (in the tab Treatment)

´ Partner, stranger

´ Absolute stranger, Absolute typed stranger

´ Matching can also be done as a program in background

if(Subject …){Group = 1;}

else …

´ Check the Parameter Table

´ May change the group manually

´ Variable group will be added into zTree tables

´ Set y and α in background as elements of the Subjects table

´ Ask the subjects to contribute in the Contribution Stage

´ All contribution is now stored in the subjects table

´ Endowment = y, Efficiency = α, Contribute = c

´ TimeSubmission: store time to collect input

´ SumContribution, N, GroupProfit, and Profit are empty (for now)

zTree program for public good game

zTree program for public good game
´ Use table functions to calculate profit

´ function(variables)

´ function(condition, variables)

´ sum, maximum, minimum, find, count, …

SumContribute = sum(same(Group), Contribute);

N = count(same(Group));

GroupProfit = Efficiency*SumContribute/N;

Profit = Endowment - Contribute + GroupProfit;

´ The scope operator (:) allows you to get to the next “higher” level

´ Summing the contribution

SumContribute = sum(Group == :Group, Contribute);

´ Ranking the contribution

RankContribute = count(Contribute <= :Contribute);

Scope Operator

´ Matching using the scope operator

´ Create n groups randomly

subjects.do{

RndNum= random(); Create a Random variable

Rank = count(RndNum<= :RndNum); Use it to rank the subjects (from 1 to 9)

Group = mod(Rank, n) + 1; Use Rank to create Groups of size 3

}

Incorrect

Scope Operator

Scope Operator

´ Matching using the scope operator

´ Remember that program is executed subject by subject

subjects.do{

RndNum= random();

}

subjects.do{

Rank = count(RndNum<= :RndNum);

Group = mod(Rank, n) + 1;

}

Experiment 3: Ultimatum Game
Goal: Use “participate” to create asymmetric roles for the subjects

Dynamically display some stages to some roles but not other

´ Subjects are matched in pairs

´ Each pair receives y points

´ Each pair has 1 proposer and 1 responder.
´ Proposers offer responders x points, x <= y

´ If the responder rejects: both get 0 points.

´ If responder accepts the offer

´ Proposers earn: π_P = y–x

´ Responders earn: π_R = x

´ Play for t periods. Each period with a new pair

´ Random matching and random assignment of roles

Not everyone participates in a given stage

´ Random matching to create pairs: check matching in tab Treatment

´ Random assignment of roles

´ Use random number generator within a group

´ Proposal stage vs. Acceptance stage

´ In each stage, one is playing and one is waiting

´ Use Participate variable in the subjects table

Rand for every player in the pair

Proposer dummy (0/1)
Participate iff Proposer

Input (Offer)

Participate iff NOT Proposer
Read the Offer (from above)

Input (Accept/Reject)

Calculate Profit
Display Profit

Participate iff NOT Proposer

Input (Minimum)

Strategy Method

Strategy Method

Calculate Profit
Display Profit

Experiment 4: Simple Auction

´ Goal: Use the Contract table

´ Subjects are buyers

´ Subjects get a (random) private value for an auctioned good v_i

´ Subjects make public bids b_i

´ Winner pays the second highest price

´ The auction is terminated after a fixed timeout

´ The winner gets: π_B = y + v_i – b_2

Contract table

´ We want to display the current highest bid
´ Subjects can only bid more than the current highest bid

´ Example: 5 subjects with random private value

Buyer Bid Order
2 10 Highest bid

Contract table

Buyer Bid Order
2 10 2nd-highest bid

5 12 Highest bid

´ We want to display the current highest bid
´ Subjects can only bid more than the current highest bid

´ Example: 5 subjects with random private value

Contract table

Buyer Bid Order
2 10

5 12 2nd-highest bid

1 15 Highest bid

´ We want to display the current highest bid
´ Subjects can only bid more than the current highest bid

´ Example: 5 subjects with random private value

Contract table

´Contract table: flexible number of records and manipulation
´ Initiate contract table

globals.do{
contracts.new{

Buyer = 0;
Bid = 0;
Order = 1;
}

}

´ Subjects enter a contract using Contract Creation Box
´Content of the contracts table can be displayed using
Contract Box

Contract table

´ Contract tables can also be used
for interaction within the same
screen.

´ Use the new command to create
the table

´ Use contract grid boxes

´ Changes to variables during the
screen are NOT recorded in the
data

Plan your Experiment in zTree

Plan an Experiment
´ Instructions and Comprehension questions

´ Multiple treatments

´ Welcome treatment (example to familiarize with the environment)

´ Same treatment with different baseline parameters (e.g. high vs low endowment)

´ Different treatments (e.g. risk attitude elicitation, then public good game)

´ Or you can have “between-subjects” designs (different subjects participate to different treatments)

´ Payment

´ You can overwrite the variable TotalProfit (e.g. implement one random treatment)

´ Questionnaire

´ You need it to create the payment file

´ You can use an “empty” questionnaire, but it can be helpful to collect demographic information,
feedback, etc.

Some formatting tips
´ Add media to your program (images, animations)

´ Communication among subjects (public or direct chat)

´ Display text using RTF
´ Modify label

Your profit equals:

-> <>{\rtf Your \b profit \b0 equals:}
´ Integrate variables into text

You bid for the item for $10

-> <>{\rtf You \i bid \i0 for the item for $<Bid|0.01>}

You won/did not win the auction

-> <>{\rtf You <if(Winner==Subject,1,0) | !text: 0=“did
not win "; 1="\b won \b0";> the auction!}

Final remarks

´ Free, easy to start testing and collecting data. Various examples online

´ The manual is a great source and the online community is pretty active

´ The coding experience can be difficult if you start with a non-standard design

´ Laboratory experiments only, the interface changes based on screen resolution

´ Draw the interface stage by stage (e.g. in PowerPoint) before starting

´ Comment your code generously. Test the task frequently to spot errors

´ Testing and troubleshooting are more helpful than learning the manual

